Numerical analysis for CO₂ absorption and regeneration behaviors in porous solid sorbent by modified unreacted-core model

Takahiro Tanaka¹, Eiki Tabata¹, Takao Nakagaki¹, Mamoru Mizunuma², Yasuko Y. Maruo² ¹Department of Modern Mechanical Engineering Waseda University, ²NTT Energy and Environment Systems Laboratories

wt%

Weight change v J 07

CO₂

ğ

 \overline{N}_2

8.0

4.0

0.0 0

8.0

6.0

4.0

2.0

0.0

400

m²/S

 D_{eff}

0.0 g ⊈ 4 0

 D_{eff} 2.0

30

0

IMPRES

Conclusions/Summary

Lithium ortho-silicate (Li₄SiO₄) is a suitable solid sorbent for capturing CO₂ from solid oxide fuel cells. CO₂ absorption reactors packed with porous-solid spherical pellets of Li₄SiO₄ show unsteady temperature distribution and capture ratio behavior owing to the unsteady CO₂ absorption rate and highly exothermic process. The CO₂ absorption rate of this sorbent reportedly depends on temperature, CO₂ concentration, and CO₂ accumulation, expressed as the weight change of the sorbent.

In this study, the modified unreacted core model is proposed to simulate the mechanism of CO₂ absorption of a porous-solid spherical pellet. Important properties such as the reaction rate constant of the unreacted core surface (k_c) , the coefficient of mass transfer through the gas film $(k_{\rm f})$, and the coefficient for effective diffusion through the product layers (D_{eff}) that characterize the behavior of the sorbent were empirically derived using thermogravimetry and a diluted packed-bed reactor. The reaction rate $S'k_c$ and the mass transfer coefficient k_f can be expressed by the Arrhenius law and forced convection mass transfer correlation for flow in packed beds, respectively. The diffusivity $D_{e\!f\!f}$ obtained by unreacted core model has a peak value at a certain temperature to fit experimental data and is underestimated at other temperatures of slow reaction rates. The Bruggeman model is commonly used to D_{eff} and a modified model using linearly decreasing porosity ε with CO₂ absorption is proposed in this work.

Numerical analysis by applying these parameters to the modified unreacted core model adequately explained the complicated CO₂ absorption and regeneration behaviors.

Unreacted core model of porous pellet

1. Rate of CO₂ mass transfer through the gas film

$$V_{CO_2,1} = 4 \pi R_s^2 k_f (C_{CO_2,b} - C_{CO_2,s})$$

2. Rate of CO, mass transfer through the product layer

$$N_{cO_2,2} = 4 \pi D_{eff} \frac{C_{CO_2,s} - C_{CO_2,c}}{1/r_c - 1/R_s}$$

3. Rate of CO₂ absorption at the surface of the unreacted core

$$N_{CO_2,3} = S' k_c (C_{CO_2,c} - C_{CO_2,eq})$$

IMPRES

Over all CO₂ absorption rate

$$\frac{dW}{dt} = \frac{4\pi R_s^2 M_{CO_2} \left(C_{CO_2, b} - C_{CO_2, eq} \right)}{\frac{1}{k_f} + \frac{R_s}{D_{eff}} \left[\left(1 - \frac{w}{w_{max}} \right)^{-1/3} - 1 \right] + \frac{4\pi R_s^2}{S' k_c} \left(1 - \frac{w}{w_{max}} \right)^{-2/3}}$$

Chain line: analytical (ε : constant) ONTT NTT Energy and Environment Systems Laboratories

*Plots: Obtained from *dW/dt* at 10% weight change lines: Calculated by Modified Bruggeman model