

Summary of Master's Thesis

Date of submission: 01/15/2019

専攻名(専門分野) Department	総合機械工学専攻	氏 名 Name	大森 一樹	指 導 教員 Advisor		隆雄	印 Seal
研究指導名 Research guidance	エクセルギー工学	学籍番号 Student ID number	ср 5217B026-1		中坦 		
研究題目 Title	SOFC アノードの三相界面における微細構造経時変化の要因分析						

1. 緒言

分散型電源を導入した双方向型システムへの転換が求めら れている中, 高度なエネルギー利用の可能な燃料電池コージェ ネレーションシステムが注目されている. その中でも固体酸化 物形燃料電池(SOFC: Solid Oxide Fuel Cells)は発電効率が高く, 有望なパワーソースとして期待されている. SOFC の更なる普 及にはコスト削減が必要不可欠であり,この要求を達成するた めには発電の高効率化や高寿命化が挙げられている. 高効率化 については SOFC の反応場である三相界面(TPB: Triple Phase Boundary)の有効度の格段の向上が必要であり、本研究室にお いて µm レベルでの制御が可能なマテリアルプリンタを用いて 微細構造の作製に取り組んでいる. 高寿命化については, 焼結 や不純物の影響など性能劣化要因の解明が重要であるが,既往 研究では定量的な議論やモデル構築までには至っていない.ま た,実験的なアプローチでは膨大な試行回数と時間を要するた め、数値解析による微細構造の経時変化の予測が有効である. そこで本研究では,固相内における粒子焼結の模擬が可能なQstate POTTS モデルを用いて、アノード TPB における微細構造 経時変化の要因を分析・考察した.

2. 焼結現象のモデリング

2.1 微細構造経時変化の主要因特定

アノード TPB 中には電子輸送パスである Ni, イオン輸送パ スである GDC(Gadolinia Doped Ceria)およびガス拡散パスであ る空隙の三相が介在しているため SOFC の運転中には様々な 現象の発生が考えられる. 文献^[1]によると, 微細構造の経時変 化は, ①物質移動による影響, ②触媒の不活性化による影響, ③熱機械的なメカニズムによる影響の 3 つの機構に大別され る. これらの影響は運転条件にも依存するため, 感度が高い要 因を特定すべく, 異なる条件における劣化現象の報告^[2]から各 劣化機構の主要因と性能への影響を図1に整理した.

図 1(a)の④~ ⑩の各現象が、図 1(b)においてどの要因に該当す るかを整理すると、物質移動による影響が最も支配的であると 推察される. Ni と GDC の焼結温度には大きな差があるため、 経時変化の主要因は"Ni 粒子の凝集"であると考えられる.

2.2 Ni 粒子凝集機構とその解析手法

粒子同士の界面において,表面張力を駆動力として低いエネ ルギー状態に推移する方向へ原子の移動/拡散が生じ,粒子同 士の焼結が進行することで凝集が促進される.この現象を固相 内での粒子焼結のモデル化に使用される Q-state POTTS モデル を用いて解析した.このモデルは多数の立方格子で構成された 三次元空間における各格子(以下,site)にq値と呼ばれる仮想的 な値を付与し,各焼結アルゴリズムにおいてq値を交換し粒子 の焼結および空隙の生成・消滅を模擬し構造変化をモデル化す る手法である.各アルゴリズムにおいて,site 交換前後におけ る系全体のエネルギーの差分を計算 し、ギブス-トムソンの式によってそ の交換頻度を定義する.図2は計算 領域内に出力した初期構造を示し、 黒枠内は断面を表す.各アルゴリズ ムすべての過程を1モンテカルロス テップ(以下, MCS)とし、各条件に設

定した初期構造にモデルを適用する 図2 初期構造の概観 ことで微細構造パラメータの経時変化を取得した.

3. 数値計算による微細構造経時変化の考察

各微細構造パラメータの内,有効な TPB 密度はアノード-電 解質層界面の抵抗および交換電流密度に影響を与えるため評 価関数として設定した.

3.1 Ni/GDC 体積比に起因する有効な TPB 密度への影響

代表径 1.00 µm, Ni/GDC 粒径比 1:1 および空隙率 25%を固定し, Ni:GDC=3:7 ~7:3 の間で初期構造を変 化させ,有効な TPB 密度の 経時変化に与える影響を評 価した.図3より,Niの体 積比が高いほどより焼結が 進行し,Ni:GDC=4:6の場

合に最も高い有効な TPB 密度を維持することが分かる.

3.2 代表径に起因する有効な TPB 密度への影響

前項と同様に代表径以 外のパラメータを固定し, 代表径を 0.25 μm 刻みで 0.50~1.50 μm の間で初期 構造を変化させた. 図4よ り,粒径が小さい構造ほど 初期の有効な TPB 密度は 高いが,減少率も高いこと が分かる.

3.3 各因子の感度解析による微細構造経時変化の予測

3.1 および 3.2 項で述べた各因子の最適な組み合わせによっ て有効な TPB 密度を高く維持することが可能であると考えら れる. そこで、3000MCS 前後で得られた各因子と減少率の関係 (図 5)から感度解析を実施し、経時変化後の有効な TPB 密度を 予測した. 図 6 より、体積比を Ni:GDC = 4:6、かつ代表径を 0.50~0.75 µm とした構造が長期間運転において最も高い性能 を維持できると考えられる.

Muhammad Shirjeel Khan et al, Ceramics International, vol.42, pp.35-48, 2016
L.Holzer et al, Journal of Power Sources, vol.196, pp.1279-1294, 2016